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ABSTRACT 

 
A summary of research directed at the development and application of high-throughput methods 
for multi-component polymer blends and nanocomposites is presented. 
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1. INTRODUCTION 
Flammability performance standards for new materials are most often met through the 

use of additives. To ensure compliance, complex mixtures containing the polymer resin, 
stabilizers, processing agents, pigments, and flame retardant additives are formulated, 
characterized, and tested one at a time. While it is in the interests of the public that flammability 
testing continues to be a critical component of materials research and development (R&D), there 
are no guarantees that innovation cycle times can be sufficiently reduced using this approach to 
respond to the competitive pressures of the global marketplace. The recognition that industry 
needs more efficient tools for materials R&D has prompted the Building and Fire Research 
Laboratory (BFRL) at the National Institute of Standards and Technology (NIST) to initiate a 
program of research directed at the development of high-throughput (or combinatorial) methods 
for materials flammability research. In this context, we use the term “high-throughput” to refer to 
a research strategy characterized by conducting many experiments at the same time. By virtue of 
its inherent efficiency, this approach will provide us with the capability to explore compositional 
space and thereby develop a better understanding of the interactions between components and 
their effects on the ultimate performance of these materials. This knowledge can be used by 
industry to determine optimal compositions with respect to materials flammability and other 
properties. 

Recent work conducted in our laboratory [1,2] has clearly demonstrated that 
nanocomposites consisting of polymer and aluminosilicate clay are significantly less flammable, 
as indicated by a reduction in peak heat release rate (HRR), than are immiscible mixtures of 
these components. This is evident in Figure 1, which compares the HRR curves (measured by 
oxygen consumption calorimetry) from two polypropylene (grafted with maleic anhydride) 
nanocomposites to the values obtained from the pure polymer (PPgMa). Since the intensity of a 
fire involving these materials will be proportional to the peak HRR, the dramatic reduction 
observed in the nanocomposites (by almost a factor of 4) indicates that they are substantially less 
flammable than pure PPgMa even though they contain only small amounts of clay (~ 4% or 



less). This favorable result is not achieved at the expense of compromising other physical 
properties. Indeed, in most cases, a dramatic improvement in the mechanical properties of these 
materials is also realized [3,4]. Preliminary results suggest that it is possible to make these 
nanocomposites from a wide range of polymers, thereby opening the way for the development of 
an entirely new generation of low flammability, high performance materials. 

Aluminosilicate clays are immiscible in most hydrocarbon polymers. For this reason, it is 
necessary to treat the clay with a compatiblizer that renders it organophilic. This usually involves 
the introduction of an organic compound containing a positively charged functional group, such 
as a quartenary alkylammonium, that can ion exchange with counter-ions associated with the 
clay. In this way, the ammonium becomes ionically tethered to the clay while the alkyl chain 
solvates in the polymer. The result of the interaction between the polymer and clay can range 
from an immiscible mixture to a nano-dispersed composite, depending on the degree of 
compatibility achieved. With respect to the latter classification, there are two limiting 
morphologies. Thus, when the compatibility is low, but not so low as to preclude any mixing, the 
extended polymer chains occupy the gallery spaces between the silicate layers that comprise the 
clay (Figure 2). The average distance between these layers (d-spacings) increases, but the 
ordered structure present in original clay is preserved. Consequently, the polymer is viewed as 
being intercalated in the clay. If, on the other hand, there is a high degree of compatibility 
between the clay and the polymer, the layers delaminate and become dispersed in the polymer. 

Figure 1. Heat release rates for PPgMa/clay nanocomposites compared to the values 
obtained for the pure polymer.



The interlayer spacings in these delaminated (or exfoilated) structures can be on the order of the 
radius of gyration of the amorphous polymer. In fact, it is very difficult to achieve uniform 
dispersion and the majority of the nanocomposite materials we have studied in our laboratory 
contain both intercalated and exfoliated regions. 

Many compatibilizers, including the most commonly used alkylammonium compounds, 
are susceptible to mechanical and thermal degradation that can cause the nanocomposite to ignite 
at lower temperatures (even though, once ignited, they tend to burn at a much slower rate) than 
the pure polymer [5,6]. Furthermore, commercial applications of polymer-based materials 
usually require the addition of plasticizers, curing agents, stabilizers, and pigments, which can 
cause a further deterioration in their properties. With high-throughput experimentation, we have 
the opportunity to explore the complex interactions that govern the ultimate performance of these 
multicomponent materials. The variables of interest are summarized in Table I. 

 

 
In this paper, we report on the progress we have made in applying high-throughput 

methods to the formulation, characterization, and flammability screening of multi-component 
polymer blends and nanocomposites. 
 
Table I. Parameter Space for High-Throughput Experiments on Polymer/Clay Nanocomposites 
Polymer Nano-

additive 
Counter
-Ion 

Organic 
Treatment 

Processing 
Conditions 

Other 
Additives 

Flame 
Retardant 
 

Polyethylene 
Polypropylene 
Polystyrene 
Nylon 6 
polyurethane 
polymethylmethacrylate 
polyvinylchloride 
 polycarbonate 
polyethyleneoxide  
polyethylenevinylacetate 

MMT 
Mica 
Hectorite 
Saponite 
Laponite 
Silica 

Na 
Ca 
Cu   
Fe 

Alkylammonium 
Imidazolium 
Crown Ether 
Silated 
Carboxylate 

Temperature 
Shear 
Residence 
time 

Stabilizers 
Processing 
UV 
Antioxidant 
Fillers 
Pigments 
 

Phosphate 
Halogenated 
Silicon -
Based 

Figure 2. Molecular model of montmorillonite clay showing the d-spacing 
between the aluminosilicate layers.



2. RESULTS 
2.1 Parallel Synthesis 

Existing technology used for combinatorial chemistry in the pharmaceutical sector can be 
exploited in making sample libraries of polymer/clay nanocomposites. Here we report on results 
obtained from our first set of experiments using a parallel reactor equipped with 24 teflon test 
tubes manufactured by Advanced ChemTech.* The purpose of this investigation was to 
determine the relative thermal stabilities of polystyrene (PS) composites obtained from clays 
treated with a series of imidazolium salts. The compatibilizers under investigation differed by the 
chain lengths of alkyl substituents on the 5th position of the imidazole ring. The preparation of 
the experimental samples was initiated by adding a small quantity of either propyl, butyl, decyl, 
or hexadecyl dimethyl imidazolium salt to test tubes containing aqueous suspensions of sodium 
montmorillonite clay (MMT). In this form, the clay is already delaminated due to favorable 
interactions with H2O. Upon introducing the imidazolium salts, the organically treated clays 
precipitated from the aqueous solutions and the excess water was drained from the reaction 
vessels. The residual solids were then washed and dissolved in toluene together with the PS 
resin. Test tubes containing these solutions were heated at temperatures between 25 °C to 60 °C 
(to determine the effect of temperature on the product) and mixed (by orbital motion) before 
removing the toluene by vacuum filtration. Some of the samples were exposed to ultrasound 
from a wand-like source that was inserted directly into the reaction vessels. Thermal gravimetric 
analyses (TGA) were then performed on the isolated products. 

 

 

Figure 3. TGA of a PS/MMT sample treated with the hexadecyl dimethyl imidazolium. 
                                                 
* Certain commercial equipment, instruments, materials or companies are identified in this paper in order to 
adequately specify the experimental procedure.  This in no way implies endorsement or recommendation by NIST. 
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A PS/MMT sample, which was treated with the hexadecyl dimethyl imidazolium at 60 
°C and sonicated for approximately 30 minutes, gave the best indication that some 
nanocomposite (as distinguished from an immiscible mixture of clay and polymer where there is 
no delamination or expansion of the clay layers) was formed. The TGA results for this sample 
are displayed in Figure 3. The peaks at 411 °C and 446 °C are due to the thermal decompositions 
of the PS and a PS/clay nanocomposite, respectively. These assignments are supported by the 
observation that, in the absence of the MMT, PS has a single peak at 414 °C and that the TEM of 
a sample from this reaction vessel (Figure 4) clearly shows delamination of some of the clay. 

 
2.2 High-Throughput Flammability Screening  

Beginning in the early 1990s, the capabilities for Si micromachining and the demand for 
low power gas sensing platforms motivated to the fabrication of miniature heating devices. A 
surface micro-machined microhotplate, pioneered by researchers at NIST [7], can be heated from 
about 20 °C to 500 °C at rates exceeding 106 °C/s. These devices are approximately 100 µm x 
100 µm and consist of three functional components (Figure 5): a polysilicon resistor, which 
generates heat by application of a current, a metal plate for uniform temperature distribution, and 
four arrow-shaped contact pads.  

Previous work conducted by Semancik and others, has demonstrated the use of these 
microhotplates as microsensors [8]. In this application, a metal oxide film is deposited on the 
contact pads and the conductance changes resulting from the interaction of gaseous agents and 
the sensing film are monitored. Rapid temperature-programmed operation (with thermal time 
constants in the millisecond range), made possible because of the extremely small mass (~ 0.2 

Figure 4. TEM image of PS/clay nanocomposite 
indicating delamination of some clay layers.



µg) of the elements, has been employed to obtain analyte-specific signatures. More recently, 
these devices have been used as microscale research platforms to study the selectivities and 
sensitivities of sensing materials [9].    
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Figure 5.  17x20 element microhotplate array (left) and a magnified image of a single element (right) 
with a diagram showing the functional components.
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Figure 6. Microhotplate heating curves for PS (circles) and a PS/clay 
nanocomposite (squares).  



We are in the process of adapting microhotplate arrays for high-throughput flammability 
screening of the polymer/clay nanocomposites. What follows is a summary of the results from 
our first set of experiments. Samples of PS and PS/clay in toluene were extracted from the 
reactor and deposited on the microhotplate elements using a micro-pipette fabricated by drawing 
out the tip of a common medicine dropper. Once deposited, the samples were heated by 
providing a current ramp to the resistors. The sample temperatures are plotted as functions of the 
applied current in Figure 6. The PS sample exhibits a transition (indicated by a change in slope), 
which we think is related to its melt-flow temperature, at about 225 °C. The PS/clay sample has a 
similar transition at a lower temperature (~ 180 °C), but also shows a second transition at about 
320 °C, which may be due to the formation of a char. A comparison of optical micrographs of 
the PS and PS/clay micro-samples after heating clearly indicate the nanocomposite is more 
thermally stable than the pure polymer, which is consistent with the TGA results. Thus, the PS 
appears to have completely gasified by 378 °C, whereas the PS/clay sample is still on the micro-
hotplate at 422 °C. 

 
2.3 High-Throughput Characterization 

All other things being equal, we expect that the improvement in both the mechanical and 
flammability properties of polymer/clay nanocomposites will correlate with the dispersion of the 
clay in the polymer. The usual methods for characterizing dispersion are X-ray diffraction 
(XRD), from which the interlayer spacings can be determined (as long as the clay retains order 
along the C axis), and transmission electron microscopy (TEM), which provides a direct image 
of the clay and polymer (albeit, only in a microscopic region). Unfortunately, these techniques 
do not provide a quantitative measure of the degree of exfoliation and dispersion and they are 
difficult to adapt for high-throughput implementation. For this reason, we are directing our 
efforts to the development of a spectroscopic method based on the use of cationic dyes that can 
intercalate in the clay. The foundation for this method was established in a recent paper where 
the effect of intercalation on the UV/VIS absorbance spectra of three cationic dyes was 

Figure 7. UV/VIS spectra of CN-0 before and after intercalation in 
montmorillonite clay.
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investigated [10]. We reproduced some of the spectra reported in this paper by dipping a fiber 
optic probe into aqueous solutions containing 1,1’–diethyl-2,2’-cyanine chloride (CN-0) and 
MMT. These spectra, which took only a few seconds to acquire, are shown in Figure 7. 
Intercalation of the CN-0 in clay results in a distinct shift in the positions of the peaks. We 
expect to be able to make use of these differences in quantifying both the concentration of clay in 
the polymer and the extent to which the layers delaminate. 
 
2.4 Continuous Gradient Extrusion  

The parallel synthesis approach described above is well suited to lead-discovery motivated 
research involving small (~1 g) samples. However, we also need a method for evaluating the 
performance of experimental formulations under more realistic processing conditions. Our ideas 
for this are conceptualized in Figure 8 [11]. This device, hereafter called the continuous gradient 
extruder (CGE), consists of a series of programmable gravimetric feeders capable of producing a 
compositional gradient in the extruded polymer, infrared and visible sensors that monitor both 
the concentrations (by quantitative infrared spectroscopy) and degree of dispersion of the 
additives, and a flammability test method. 

 

 
A compositionally graded sample containing ammonium polyphosphate (APP) and 

pentaerythritol (PER) in polystyrene was produced in the CGE and burned in our horizontal 
ignition flammability test (HIFT) device under a constant flux of (16.8 ± 0.4) kW/m2. The 
sample was a strip (approximately 1.5 m long, 0.007 m wide and 0.002 m thick) consisting of PS 
blended with varying amounts of a 3:1 mixture of APP and PER. We attempted to create a linear 
concentration gradient (from C = 0 % to C = 30 % additive by mass) by increasing the rate of 
feed from the hopper containing the mixture of APP and PER linearly with time. 

Extruded sample with composition gradients

Radiant Heat 
Source

extruded sample

Figure 8. Photograph of our extruder with computer controlled gravimetric feeders (left) and a picture 
that depicts the experimental design for flammability screening of compositionally graded materials.
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Figure 9. The progression of the flame front as a function of time measured 
for the PS/APP/PER gradient. The solid line was obtained by fitting the 
experimental data (circles) to a hypothetical function derived on the basis of 
assumptions stated in the text.
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for PS/clay gradient. The solid line was obtained by fitting the experimental 
data (circles) to a hypothetical function derived on the basis of assumptions 
stated in the text. 



The flame velocities were measured by pulling the extruded strip through a 300 mm heating zone 
such that the flame front remained at a fixed position. The results are plotted in Figure 9. The 
data (t) was collected at 0.050 m intervals, which were marked off on the strip, with the initial 
point (at x = 0) corresponding to the pure polymer (C = 0 % at x = 0). The solid line was 
obtained by fitting the experimental data to a hypothetical function (exponential) that was 
derived by assuming a linear dependence between flame velocity and additive concentration, 
which was also assumed to decrease linearly with distance. The validity of these assumptions is 
supported by the fact that this function does a good job of representing the experimental data. 
The derivative of the function in Figure 9 is a linear function of x (or C = ax) with a negative 
slope indicating a reduction in the flame velocity with increasing concentration of additive as 
expected. 
 Comparable data was collected for a PS/clay strip with an approximately linear 
concentration gradient of clay varying from 0 % to about 14 % by mass. In this case, the flame 
velocities were observed to accelerate with increasing clay concentration (Figure 10), suggesting 
that the presence of the clay actually enhances the spread of flames over the surface of this 
material. This observation is consistent with our previous observation that polymer/clay 
nanocomposites ignite at lower temperatures (even though, once ignited, they tend to burn with a 
lower HRR) than the pure polymer, since lower ignition temperatures facilitate flame spread. 
Eventually, we would like to make simultaneous measurements of both flame velocity and heat 
release to determine the optimal composition, which results in the best compromise between 
flame spread and HRR.  

3. SUMMARY AND CONCLUSIONS 
 

An overview of the research directed at the development and application of high-
throughput methods for multi-component polymer blends and nanocomposites that is currently 
underway in the Building and Fire Research Laboratory was presented. Substantial progress has 
been made in the parallel synthesis, extrusion, characterization, and flammability screening of 
these materials. We anticipate that our approach of combining high-throughput experimentation 
with nano-technology will yield new insights into the ways that components interact to 
determine the ultimate properties of complex materials. 
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